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Nondeterministic solutions to complex problems routinely require many fewer 
resources than deterministic ones. In Turing machines and their equivalents, the 
deterministic solution requires high energy expenditure because each operation 
costs energy. We show that photons behave nondeterministically and thus make 
dramatic energy savings in problems which can be implemented optically. 

1. I N T R O D U C T I O N  

It is common to measure the computat ional  complexity of  an algorithm 
or process in terms of  how the computat ional  resources (time, space, energy) 
must scale with some linear measure N of  problem size. In optical process- 
ing, N might be the number  of  input beam resolution cells, output detectors, 
interconnections, etc. Concentrating on the resource-dominant term, we 
find that many  calculations scale as N p, where p is some small (often 
integer) number.  We call these polynomial  problems or algorithms. Other 
problems scale in a nonpolynomial  way, e.g., pN, and we call these exponen- 
tial problems. It is a peculiar feature of  exponential problems that they can 
often be solved by decision-tree algorithms. In such cases, if we magically 
knew what paths to take (a nondeterministic situation), then we could solve 
the problem with polynomial  resources. Such problems are called nondeter- 
ministic polynomial  (NP). NP-complete  (NPC) problems, a subset of  NP, 
are particularly interesting because each of  these problems can be transfor- 
med into any other NPC problem with polynomial  resources. Thus, if we 
could ever find a polynomial  solution to any one of the several thousand 
NPC problems,  we could solve any other one also with polynomial  resources. 

Our concern in this paper  is with what may be viewed as nondeterminis- 
tic energy propagat ion in certain computers.  While we wish to exclude lucky 
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nondeterministic choices as highly unreliable, we also wish to avoid the 
difficulty of massive energy costs in making many deterministic calculations. 
In Section 2, we discuss a heretofore unexplored intermediate case. 

In optical computers, the energy required to read out information is 
manifested as photon detections. We will show that photons behave in 
precisely the nondeterministic manner described above. Hopfield and Tank 
(1985) demonstrated that an NPC problem can be implemented as a neural 
network. Therefore, if we can set up any problem properly for optical 
processing, the photonic complexity is at most O(N2), utilizing two spatial 
dimensions for output. 

So far as we know, this represents the first actual implementation of a 
nondeterministic computation. It also ties together, for the first time, quan- 
tum indeterminacy and nondeterministic computation. 

2. VIRTUAL PATH CALCULATIONS 

There are many paradigms for "explaining" quantum mechanical 
behavior, all of which are consistent with the theory and the observations. 
We will move freely and with no consistency among them in our effort to 
explain the concepts involved. We are thereby not advocating one picture 
over another. 

One popular view is that the wavefunction guides the physical events. 
In a suitably constructed optical computer (Caulfield and Shamir, 1989, 
1991), the configuration of the entire apparatus is required to generate the 
wavefunction �9 which predicts, through ~ * ~ ,  the probability of a photon 
detection at any detector during some time interval. Photons are detected 
at a point with high probability only if ~ * ~  is high at that point. But, if 
the apparatus is so constructed that detections represent solutions to a 
computationally complex problem, then photons behave in the proper 
nondeterministic manner. They are guided to do so by a wavefunction which 
has explored all of the possible paths and selected the optimum one. 

The viewpoint that all paths are explored and path amplitudes are 
summed coherently to obtain the wavefunction is the basis of quantum 
electrodynamics (QED). Indeed, Feynman's exposition of QED (Feynman, 
1988) can be read as an explanation of how nature does other nondeterminis- 
tic computations. An example is light obeying Fermat's principle. 

Previous discussions (Caulfield and Shamir, 1989, 1991) of the quantum 
mechanics of optical computers invoked complementarity, or the wave- 
particle duality (WPD) principle. The authors even called such computers 
"WPD processors." In describing the diffraction of a light wave by a spatial 
light modulator, coded-array aperture, hologram, diffraction grating, pin- 
hole, or whatever, it is usually disadvantageous to invoke the photon picture 
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until a photodetection event has occurred. Then one may speak of  the 
detection of a particle (photon). The region between the source and detector 
is best regarded as being permeated by the light field, the intensity of which 
determines the probability of a photon detection at a given spacetime point. 
For low light levels, the field intensity is low, so the probability of detecting 
a photon at any given spacetime point is low. 

This situation in Young's experiment is frequently the paradigm 
employed to demonstrate the principle of complementarity (wave-particle 
duality) and quantum indeterminacy. In a familiar experiment, the light 
field intensity is so low that no more than one photon is traversing the 
apparatus at any given time. After waiting a sufficiently long time, we 
observe a (time-integrated) two-slit interference pattern produced on the 
detector plane. That implies that, while any given photon could only have 
traversed the apparatus by passing through one and only one of the two 
slits, each photon seems to be "aware" of the presence of the other slit. 
Otherwise, a single-slit diffraction pattern would result. Of course, this 
dilemma dissolves when the wave picture is invoked for describing the 
region between source and detector (but not including the detectors, where 
the photon picture is appropriate). One may think of a field being established 
between source and detector, disturbed by the presence of the slits in such 
a way as to provide pathways through spacetime for the photons. Naturally, 
these paths are influenced by both (or all) slits. 

We can quantify these notions and express them mathematically. Con- 
sider the path of a photon from one spacetime point x = (t, x) to another 
x' = (t', x'). The probability amplitude for a particle leaving the point x at 
time t and reaching the point x' at time t ' >  t is represented by ix', C lx, t). 
Let ~" ~ (t, t') but be otherwise arbitrary. Then, we may write 

ix', t'lx, t)= fR3 (X', t'lx", r)(x", r[x, t) d3x ,, 

for t < r < t ' .  
We may give a physical interpretation of this expression within the 

context of the multiple-slit experiment. Suppose a photon is emitted at time 
t from a point source at the position x. At a later time r it passes through 
one of the several apertures in an infinite planar mask M. It ultimately 
reaches a point x' in another (detection) plane, parallel to M, at time t'. 
Then, the probability amplitude for this process is (Manoukian, 1989), to 
within a normalization factor, 

ix', t 'lx, t)= fM (X', t'lx" , "r}(x", rlx, t} d2x ,, 

where x" lies in the plane of M and t < z < t'. If the mask contains, say, N 



976 Brashere ta l .  

apertures Aj, for j = 1, 2 , . . . ,  N, and assuming that a photon cannot arrive 
at the detection plane unless it passes through one of them, then 

(x', t'lx, t)= ~ fA (X', t'lxj, r)(xj, f ix  , t) d2xj 
j = l  j 

where xj e Aj. 
Thus, the probability amplitude for a photon being emitted from x and 

arriving at x' is the sum of the amplitudes for all possible paths from x to 
x' via all the apertures Aj in the mask M. Moreover, the contributions from 
each of the paths in the sum are simultaneous. 

The physical interpretation is that each and every possible path from 
x to x' through M is traversed simultaneously in parallel by many "virtual 
photons" and the "correct" path corresponds to that of the "real" (detected) 
photon. These virtual photons make the path explorations with no measur- 
able energy expenditure. Indeed, they are unobservable and exist only for 
times consistent with the uncertainty principle. It is this "quantum parallel- 
ism" (Deutsch, 1985) which endows our quantum computer with its extra- 
Turing capabilities. Problems having computational complexity beyond the 
realm of the Turing machine can thus be addressed. 

Virtual photons do the computation fully deterministically and in 
parallel. The observable photons display the results of those calculations 
probabilistically. A Turing-equivalent computer acts in a deterministic 
fashion making many serial calculations. Each calculation requires at least 
an amount kT In 2 of energy (Brillouin, 1962; Fredkin and Toffoli, 1982). 
Thus, for a complex problem, energy expenditure can be quite high, 
However, the energy carriers in optics efficiently appear, in what can be 
considered to be a nondeterministic fashion, at the proper detectors. 

3. CONCLUDING REMARKS 

We have explained how to reduce the energy scaling from O(N 4) for 
typical optics (Caulfield and Shamir, 1989, 1990) to at most O(N 2) and 
the time complexity (Shamir, 1987; Lohmann and Marathay, 1989) to at 
most O(N) with optical computers. In the context of Young's experiment, 
the virtual photons simultaneously search all possible paths through the 
aperture mask and the selection of the correct solution is manifested as the 
detection of a "real" photon. The virtual photons employ the deterministic 
algorithm (searching all paths), while the real photons solve the nondeter- 
ministic problem (following the correct path). This can, in principle, be 
accomplished with as little as a single photon and in as little time as a single 
time-of-flight, at an energy complexity and time complexity of O(1). The 
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desired precision dictates the actual number  o f  pho tons  required, which is 
considerably  less than for  the full deterministic computa t ion.  
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